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Abstract. Polarized forward–backward asymmetries in the Bs → �+�−γ decay are calculated using the most
general, model independent form of the effective Hamiltonian, including all possible forms of interactions.
The dependencies of the asymmetries on new Wilson coefficients are investigated. The detectability of the
asymmetries at LHC is discussed.
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1 Introduction

Rare radiative leptonic Bs(d) → �+�−γ decays are induced
by the flavor-changing neutral current transitions b → s(d).
In the standard model (SM) such processes are described by
penguin and box diagrams and have branching ratios 10−8–
10−15 (see for example [1]). These rare decays cannot be
observed at the running machines such as Tevatron, BaBar
and Belle, but the Bs(d) → µ+µ− and Bs(d) → µ+µ−γ
decays can be detected at LHC with ATLAS, CMS and
LHCb detectors [2]. Many experimental observables such as
the branching ratio, photon energy, dilepton mass spectra
and charge asymmetries, as well as the transition form
factors, are investigated for the Bs(d) → �+�−γ decays
in [3–9]. At the same time Bs(d) → �+�−γ decays might be
sensitive to new physics beyond the SM. New physics effects
in these decays can appear in two different ways: either
through the new operators in the effective Hamiltonian
which are absent in the SM, or through new contributions
to the Wilson coefficients existing in the SM. One efficient
way for the precise determination of the SM parameters
and looking for new physics beyond the SM is studying the
lepton polarization effects. It has been pointed out in [10]
that some of the single lepton polarization asymmetries
might be too small to be observed and might not provide a
sufficient number of observables in checking the structure
of the effective Hamiltonian. In need of more observables,
in [10] a maximum number of independent observables have
been constructed by considering the situation where both
lepton polarizations are simultaneously measured.

In the present work, we analyze the possibility of search-
ing for new physics in the Bs → �+�−γ decay by study-
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ing the forward–backward asymmetries when both leptons
are polarized, using the most general, model independent
form of the effective Hamiltonian including all possible
interactions. Note that the sensitivity of double-lepton po-
larization asymmetries on new Wilson coefficients for the
Bs → �+�−γ decay has been investigated recently in [11].

This work is organized as follows. In Sect. 2, the matrix
element for the Bs → �+�−γ is obtained, using the gen-
eral, model independent form of the effective Hamiltonian.
In Sect. 3, we calculate the polarized forward–backward
asymmetries of the leptons in Bs → �+�−γ decay. Sec-
tion 4 is devoted to the numerical analysis, discussions
and conclusions.

2 Theoretical framework

In the present section we derive the matrix element for the
Bs → �+�−γ using the general, model independent form of
the effective Hamiltonian. The matrix element for the pro-
cess Bs → �+�−γ can be obtained from that of the purely
leptonic Bs → �+�− decay. At inclusive level the process
Bs → �+�− is described by the b → q�+�− transition. The
effective b → q�+�− transition can be written in terms of
twelve model independent four-Fermi interactions in the
following form [12]:

Heff =
Gα√
2π
VtqV

∗
tb

×
{
CSL q̄iσµν

qν

q2
L b �̄γµ�+ CBR q̄iσµν

qν

q2
Rb �̄γµ�

+Ctot
LL q̄γµLb �̄γ

µL�+ Ctot
LR q̄γµLb �̄γ

µR�

+CRL q̄γµRb �̄γ
µL�+ CRR q̄γµRb �̄γ

µR�

+CLRLR q̄Rb �̄R�+ CRLLR q̄Lb �̄R�
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+CLRRL q̄Rb �̄L�+ CRLRL q̄Lb �̄L�

+CT q̄σµνb �̄σ
µν�+ iCTE ε

µναβ q̄σµνb �̄σαβ�

}
, (1)

where CX are the coefficients of the four-Fermi interac-
tions and

L =
1 − γ5

2
, R =

1 + γ5

2
.

The terms with coefficients CSL and CBR which describe
penguin contributions correspond to −2msC

eff
7 and

−2mbC
eff
7 in the SM, respectively. The next four terms

in this expression are the vector interactions. The interac-
tion terms containing Ctot

LL and Ctot
LR in the SM have the

form Ceff
9 − C10 and Ceff

9 + C10, respectively. Inspired by
this, Ctot

LL and Ctot
LR will be written as

Ctot
LL = Ceff

9 − C10 + CLL,

Ctot
LR = Ceff

9 + C10 + CLR,

where CLL and CLR describe contributions from new
physics. The terms with coefficientsCLRLR,CRLLR,CLRRL
and CRLRL describe the scalar type interactions. The last
two terms in (1) with the coefficients CT and CTE describe
the tensor type interactions.

Having presented the general form of the effective
Hamiltonian the next problem is the calculation of the
matrix element of the Bq → �+�−γ decay. This matrix ele-
ment can be written as the sum of the two parts, structure-
dependent and inner-Bremsstrahlung parts

M = MSD + MIB. (2)

The matrix element for the structure-dependent part MSD,
which corresponds to the radiation of photon from initial
quarks, can be obtained by calculating the matrix element
〈γ |Heff |B〉. Using (1) we see that for calculation of MSD
we need to know the following matrix elements:

〈γ |s̄γµ(1 ∓ γ5)b|B〉 ,
〈γ |s̄σµνqνb|B〉 ,
〈γ |s̄σµνb|B〉 ,
〈γ |s̄(1 ∓ γ5)b|B〉 . (3)

The first two of the matrix elements in (3) are defined in
the following way [3, 7, 13,14]:

〈γ(k) |q̄γµ(1 ∓ γ5)b|B(pB)〉
=

e

m2
B

{
εµνλσε

∗νqλkσg(q2)

± i [ε∗µ(kq) − (ε∗q)kµ] f(q2)
}
, (4)

〈γ(k) |q̄σµνb|B(pB)〉
=

e

m2
B

εµνλσ
[
Gε∗λkσ +Hε∗λqσ +N(ε∗q)qλkσ

]
. (5)

Here, ε∗ and k are the four vector polarization and mo-
mentum of the photon, respectively, q = pB − k is the mo-
mentum transfer, pB is the momentum of the B meson and

g(q2), f(q2),G(q2),H(q2) andN(q2) are theBs → γ transi-
tion form factors.Thematrix element 〈γ(k)|s̄σµνγ5b|B(pB)〉
can be obtained from (5) using the identity

σµν = − i
2
εµναβσ

αβγ5.

The matrix elements

〈γ(k) |s̄(1 ∓ γ5)b|B(pB)〉
and 〈γ |s̄iσµνqνb|B〉

can be obtained from (4) and (5) by multiplying them by
qµ and qν , respectively, as a result of which we get

〈γ(k) |s̄(1 ∓ γ5)b|B(pB)〉 = 0, (6)

〈γ |s̄iσµνqνb|B〉 =
e

m2
B

i εµναβqνεα∗kβG. (7)

The matrix element 〈γ |s̄iσµνqν(1 + γ5)b|B〉 can be written
in terms of the two form factors f1(q2) and g1(q2) that are
calculated in the framework of QCD sum rules [3, 13] in
the following way:

〈γ |s̄iσµνqν(1 + γ5)b|B〉
=

e

m2
B

{
εµαβσ ε

α∗qβkσg1(q2)

+i
[
ε∗
µ(qk) − (ε∗q)kµ

]
f1(q2)

}
. (8)

It should be noted that these form factors were calculated
in the framework of the light-front model in [14]. Equa-
tions (5), (7) and (8) allow us to express G, H and N in
terms of f1 and g1. Equations (4)–(8) help us rewrite MSD
in the following form:

MSD =
αGF

4
√

2 π
VtbV

∗
tq

× e

m2
B

{�̄γµ(1 − γ5)�

× [
A1εµναβε

∗νqαkβ + iA2
(
ε∗
µ(kq) − (ε∗q)kµ

)]
+�̄γµ(1 + γ5)�

× [
B1εµναβε

∗νqαkβ + iB2
(
ε∗
µ(kq) − (ε∗q)kµ

)]
+i εµναβ �̄σµν�

[
Gε∗αkβ +Hε∗αqβ +N(ε∗q)qαkβ

]
+i �̄σµν� (9)

× [G1(ε∗µkν − ε∗νkµ) +H1(ε∗µqν − ε∗νqµ)

+N1(ε∗q)(qµkν − qνkµ)]},
where

A1 =
1
q2

(CBR + CSL) g1 +
(
Ctot

LL + CRL
)
g,

A2 =
1
q2

(CBR − CSL) f1 +
(
Ctot

LL − CRL
)
f,

B1 =
1
q2

(CBR + CSL) g1 +
(
Ctot

LR + CRR
)
g,
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B2 =
1
q2

(CBR − CSL) f1 +
(
Ctot

LR − CRR
)
f,

G = 4CTg1,

N = −4CT
1
q2

(f1 + g1), (10)

H = N(qk),

G1 = −8CTEg1,

N1 = 8CTE
1
q2

(f1 + g1),

H1 = N1(qk).

In regard to the inner-Bremsstrahlung part, as a result of
the relevant calculations we get

MIB =
αGF

4
√

2 π
VtbV

∗
tqefB i

{
F �̄

( �ε∗ �pB
2p1k

− �pB �ε∗

2p2k

)
γ5�

+F1 �̄

[ �ε∗ �pB
2p1k

− �pB �ε∗

2p2k
+ 2m�

(
1

2p1k
+

1
2p2k

)
�ε∗

]
�

}
.

(11)

In deriving (11), we have used

〈0|s̄γµγ5b|B〉 = −ifBpBµ,

〈0|s̄σµν(1 + γ5)b|B〉 = 0,

The functions F and F1 are defined as follows

F = 2m�

(
Ctot

LR − Ctot
LL + CRL − CRR

)
+
m2
B

mb
(CLRLR − CRLLR − CLRRL + CRLRL) ,

F1 =
m2
B

mb
(CLRLR − CRLLR + CLRRL − CRLRL) . (12)

3 Polarized forward–backward asymmetries
of the leptons in Bs → �+�−γ decay

In the present section we calculate the polarized forward–
backward asymmetries of leptons. For this purpose we de-
fine the following orthogonal unit vectors s±

i (here i = L, T
or N stands for longitudinal, transversal or normal polar-
izations, respectively) in the rest frame of �±

s−µ
L =

(
0, e−

L

)
=

(
0,

p−
|p−|

)
,

s−µ
N =

(
0, e−

N

)
=

(
0,

pΛ × p−
|pΛ × p−|

)
,

s−µ
T =

(
0, e−

T

)
=

(
0, e−

N × e−
L

)
,

s+µL =
(
0, e+

L

)
=

(
0,

p+

|p+|
)
,

s+µN =
(
0, e+

N

)
=

(
0,

pΛ × p+

|pΛ × p+|
)
,

s+µT =
(
0, e+

T

)
=

(
0, e+

N × e+
L

)
, (13)

where p± and k are the three-momenta of the leptons �±
and photon in the center of mass frame (CM) of �− �+
system, respectively. Transformation of unit vectors from
the rest frame of the leptons to CM frame of leptons can
be accomplished by the Lorentz boost. Boosting of the
longitudinal unit vectors s±µ

L yields

(
s∓µ
L

)
CM =

( |p∓|
m�

,
E�p∓
m� |p∓|

)
, (14)

where p+ = −p−,E� andm� are the energy mass of leptons
in the CM frame. The remaining unit vectors s±µ

N , s±µ
T are

unchanged under a Lorentz transformation.
The definition of the normalized, unpolarized differen-

tial forward–backward asymmetry is

AFB =

∫ 1

0
dz

d2Γ

dŝdz
−

∫ 0

−1
dz

d2Γ

dŝdz∫ 1

0
dz

d2Γ

dŝdz
+

∫ 0

−1
dz

d2Γ

dŝdz

, (15)

where z = cos θ is the angle between Λb meson and �− in
the center of mass frame of the leptons. When the spins
of both leptons are taken into account, the AFB will be a
function of the spins of the final leptons, and it is defined as

Aij
FB(ŝ)

=
(

dΓ (ŝ)
dŝ

)−1 {∫ 1

0
dz −

∫ 0

−1
dz

}

×
{[

d2Γ (ŝ, s− = i, s+ = j)
dŝdz

− d2Γ (ŝ, s− = i, s+ = −j)
dŝdz

]

−
[

d2Γ (ŝ, s− = −i, s+ = j)
dŝdz

− d2Γ (ŝ, s− = −i, s+ = −j)
dŝdz

]}
,

= AFB(s− = i, s+ = j) − AFB(s− = i, s+ = −j)

−AFB(s− = −i, s+ = j)

+AFB(s− = −i, s+ = −j). (16)

Using these definitions for the double polarized FB
asymmetries, we get the following results:

ALL
FB =

1
∆

{
−4m2

B ŝ(1 − ŝ)2vRe[A∗
1A2 −B∗

1B2]

− 2
m̂�

mB ŝ(1 − ŝ)2v(1 − v2)

× (Im[(A∗
1 −B∗

1)G1] − Re[(A2 −B2)∗G])

− 4
m̂�

mB ŝ
2(1 − ŝ)v(1 − v2) Im[(A∗

1 −B∗
1)H1]
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+
4
m̂�v

fBmB ŝ(1 − ŝ)(1 − v2) ln[1 − v2]

× Re[(A∗
2 −B∗

2)F ]

− 4
m̂�v

fBmB ŝ(1 − ŝ)(1 − v2) ln[1 − v2]

× Re[(A∗
1 −B∗

1)F1]
}
, (17)

ALN
FB =

1
∆

{
− 4

3
mB

√
ŝ(1 − ŝ)2v

× Re[(A∗
1 −A∗

2 +B∗
1 +B∗

2)G1]

+
4
3
mB

√
ŝ(1 − ŝ)2v Im[(A∗

1 −A∗
2 −B∗

1 −B∗
2)G]

+
4
3
m3
B

√
ŝ3(1 − ŝ)2v

× (Re[(A∗
2 −B∗

2)N∗
1 ] − Im[(A∗

2 +B∗
2)N ])

− 2
3m̂�

m2
B

√
ŝ3(1 − ŝ)2v(1 − v2)

× (
2 Re[G∗N1 +G∗

1N +m2
B ŝN

∗
1N ]

+ Im[A∗
1B1 +A∗

2B2])

−fBm2
B

√
ŝ(1 − ŝ)

×{
2fBm2

Bm̂� Im[F ∗
1 F ]I4

+v [mB(1 − ŝ) Im[(A∗
1 +B∗

1)F1]

+mB Im[(A∗
1 −A∗

2 −B∗
1 −B∗

2)F

− ŝ(A∗
1 +A∗

2 −B∗
1 +B∗

2)F ] + 8m̂� Re[F ∗H1]] I7 }
+fBm3

B

√
ŝ(1 − ŝ)

×v[1 − ŝ(1 − 2v2)] Im[(A∗
2 −B∗

2)F1]J4

+8fBm2
Bm̂�

√
ŝ(1 − ŝ)vRe[F ∗(G1 +m2

BN1)]J4

+4fBm4
Bm̂�

√
ŝ(1 − ŝ)2v Im[F ∗

1N ]J4

}
, (18)

ANL
FB =

1
∆

{
4
3
mB

√
ŝ(1 − ŝ)2v

× Re[(A∗
1 +A∗

2 +B∗
1 −B∗

2)G1]

+
4
3
mB

√
ŝ(1 − ŝ)2v Im[(A∗

1 +A∗
2 −B∗

1 +B∗
2)G]

+
4
3
m3
B

√
ŝ3(1 − ŝ)2

×v (Re[(A∗
2 −B∗

2)N1] + Im[(A∗
2 +B∗

2)N ])

+
2

3m̂�
m2
B

√
ŝ3(1 − ŝ)2v(1 − v2)

× (
2 Re[G∗N1 +G∗

1N +m2
B ŝN

∗
1N ]

− Im[A∗
1B1 +A∗

2B2])

+fBm2
B

√
ŝ(1 − ŝ)

×{
2fBm2

Bm̂� Im[F ∗
1 F ]I4

+v [mB(1 − ŝ) Im[(A∗
1 +B∗

1)F1]

−mB Im[(A∗
1 +A∗

2 −B∗
1 +B∗

2)F

− ŝ(A∗
1 −A∗

2 −B∗
1 −B∗

2)F ] + 8m̂� Re[F ∗H1]] I7 }
+fBm3

B

√
ŝ(1 − ŝ)v[1 − ŝ(1 − 2v2)]

× Im[(A∗
2 −B∗

2)F1]J4

−8fBm2
Bm̂�

√
ŝ(1 − ŝ)vRe[F ∗(G1 +m2

BN1)]J4

−4fBm4
Bm̂�

√
ŝ(1 − ŝ)2v Im[F ∗

1N ]J4

}
, (19)

ALT
FB =

1
∆

{
4

3
√
ŝ
m̂�(1 − ŝ)2

[
4

(
|G1|2 + |G|2

)

+m2
B ŝ

(
|A1|2 + |A2|2 + |B1|2 + |B2|2

)]

− 4
3
mB

√
ŝ(1 − ŝ)2v2 (Im[(A∗

1 −B∗
1)G1]

− Re[(A∗
2 −B∗

2)(G+m2
B ŝN)]

)
− 4

3
mB

√
ŝ(1 − ŝ)2(2 − v2) (? Re[(A∗

1 +B∗
1)G]

− Im[(A∗
2 +B∗

2)
(
G1 +m2

B ŝN1
)
]
)

+
8
3
m2
Bm̂�

√
ŝ(1 − ŝ)2

×
(
Re[A∗

1B1 +A∗
2B2 + 4G∗

1N1] + 2m2
B ŝ |N1|2

)

+
1√
ŝ
f2
Bm

4
Bm̂�(1 − ŝ)

×
[
(1 − ŝ)

(
|F1|2 + |F |2

)
(J1 + J2) + 2ŝv |F1|2 J3

]
+fBm3

B

√
ŝ(1 − ŝ)2v2 Re[(A∗

1 −B∗
1)F1]J4

−fBm3
B

√
ŝ(1 − ŝ2)v2 Re[(A∗

2 −B∗
2)F ∗]J4

+fBm3
B

√
ŝ(1 − ŝ)2(2 − v2) Re[(A∗

1 +B∗
1)F ]J4

−4fBm4
Bm̂�

√
ŝ(1 − ŝ)[2 + v2 − ŝ(2 − v2)]

× Im[F ∗
1N1]J4

+8fBm2
Bm̂�

√
ŝ(1 − ŝ)v2 Im[F ∗

1H1]J4

−fBm3
B

√
ŝ(1 − ŝ)[2 − v2 − ŝ(2 − 3v2)]

× Re[(A∗
2 +B∗

2)F1]J4

− 8√
ŝ
fBm

2
Bm̂�(1 − ŝ)

[
(1 − ŝ+ ŝv2) Im[F ∗

1G1]

+ (1 − ŝ) Re[F ∗G]]J4

}
, (20)

ATL
FB =

1
∆

{
− 4

3
√
ŝ
m̂�(1 − ŝ)2

[
4

(
|G1|2 + |G|2

)

+m2
B ŝ

(
|A1|2 + |A2|2 + |B1|2 + |B2|2

)]

− 4
3
mB

√
ŝ(1 − ŝ)2v2



T.M. Aliev et al.: Polarized forward–backward asymmetries of leptons in Bs → �+�−γ decay 509

× (Im[(A∗
1 −B∗

1)G1]

− Re[(A∗
2 −B∗

2)(G+m2
B ŝN)]

)
+

4
3
mB

√
ŝ(1 − ŝ)2(2 − v2)

× (Re[(A∗
1 +B∗

1)G]

− Im
[
(A∗

2 +B∗
2)

(
G1 +m2

B ŝN1
)])

− 8
3
m2
Bm̂�

√
ŝ(1 − ŝ)2

×
(
Re[A∗

1B1 +A∗
2B2 + 4G∗

1N1] + 2m2
B ŝ |N1|2

)

− 1√
ŝ
f2
Bm

4
Bm̂�(1 − ŝ)

×
[
(1 − ŝ)

(
|F1|2 + |F |2

)
(J1 + J2) + 2ŝv |F1|2 J3

]
+fBm3

B

√
ŝ(1 − ŝ)2v2 Re[(A∗

1 −B∗
1)F1]J4

−fBm3
B

√
ŝ(1 − ŝ2)v2 Re[(A∗

2 −B∗
2)F ]J4

−fBm3
B

√
ŝ(1 − ŝ)2(2 − v2) Re[(A∗

1 +B∗
1)F ]J4

+4fBm4
Bm̂�

√
ŝ(1 − ŝ)[2 + v2 − ŝ(2 − v2)]

× Im[F ∗
1N1]J4

−8fBm2
Bm̂�

√
ŝ(1 − ŝ)v2 Im[F ∗

1H1]J4

+fBm3
B

√
ŝ(1 − ŝ)[2 − v2 − ŝ(2 − 3v2)]

× Re[(A∗
2 +B∗

2)F1]J4

+
8√
ŝ
fBm

2
Bm̂�(1 − ŝ)

[
(1 − ŝ+ ŝv2) Im[F ∗

1G1]

+(1 − ŝ) Re[F ∗G]
]J4

}
, (21)

where

∆ = 16mBm̂�(1 − ŝ)2 (Im[(A∗
2 +B∗

2)G1]

− Re[(A∗
1 +B∗

1)G−mBm̂�(A∗
1B1 +A∗

2B2)])

+48mBm̂�ŝ(1 − ŝ) Im[(A∗
2 +B∗

2)H1]

−8m3
Bm̂�ŝ(1 − ŝ)2 Im[(A∗

2 +B∗
2)N1]

+
2
3

(1 − ŝ)2
[
4(3 − v2)

(
|G1|2 + |G|2

)
+m2

B ŝ(3 + v2)
(
|A1|2 + |A2|2 + |B1|2 + |B2|2

)]
+16ŝv2

[
(1 − ŝ) Re[G∗H] + ŝ |H|2

]
+16ŝ(3 − 2v2)

[
(1 − ŝ) Re[G∗

1H1] + ŝ |H1|2
]

− 4
3
m2
B ŝ(1 − ŝ)2(3 − 2v2)

(
2 Re[G∗

1N1] +m2
B ŝ |N1|2

)

− 4
3
m2
B ŝ(1 − ŝ)2v2

(
2 Re[G∗N ] +m2

B ŝ |N |2
)

− 1
2
f2
Bm

4
B |F |2

×{
(1 − ŝ)2v2(I1 + I3) − (1 + ŝ2 + 2ŝv2)I2

− [1 − ŝ(4 − ŝ− 2v2)]I5
}

+
1
2
f2
Bm

4
B |F1|2

×{−(1 − ŝ)2v2(I1 + I3)

+[1 − ŝ(2 − ŝ− 4v2 + 2ŝv2 − 2ŝv4)]I2

−2ŝ(1 − ŝ)v(1 − v2)I4

+[1 − ŝ(2 − ŝ+ 2ŝv2 − 2ŝv4)]I5
}

−4fBm2
B ŝvRe[F ∗H][(1 − ŝ)vI6 + (1 + ŝ)I7]

−4fBm2
B ŝ Im[F ∗

1H1]

×[(1 − ŝ)v2I6 + (3 − 2v2 − 3ŝ+ 4ŝv2)I7]

+2fBmBm̂� Re[(A∗
1 +B∗

1)F ]

× [
8(1 + ŝ) +m2

B(1 − ŝ2)v2I6

+m2
B(1 − ŝ)(1 − 3ŝ)I7

]
−fBmBm̂�(1 − ŝ) Re[(A∗

2 +B∗
2)F1]

× [
8 +m2

B(1 − 5ŝ)v2I6 +m2
B(3 − 3ŝ+ 4ŝv2)I7

]
+fB Im[F ∗

1G1]

× [−24(1 − ŝ+ 2ŝv2)

+m2
B(1 − ŝ)(1 + 3ŝ− 6ŝv2)v2I6

−m2
B(1 − ŝ)(1 − ŝ− 2ŝv2)I7

]
+fB Re[F ∗G]

× [−24(1 + ŝ) +m2
B(1 − ŝ)(1 − 3ŝ)v2I6

−m2
B(1 − ŝ)(1 − 7ŝ+ 4ŝv2)I7

]
+fBm2

B ŝ Im[F ∗
1N1]

[−8(1 − ŝ+ 2ŝv2)

+m2
B(1 − ŝ)(3 + ŝ− 2ŝv2)v2I6

+m2
B(1 − ŝ)(3 − 2v2 − 3ŝ+ 4ŝv2)I7

]
+fBm2

B ŝRe[F ∗N ]

× [−8(1 + ŝ) +m2
B(1 − ŝ)(3 − ŝ)v2I6

+m2
B(1 − ŝ2)I7

]
. (22)

In (16)–(22), ŝ = q2/m2
B , v =

√
1 − 4m̂2

�/ŝ is the lepton
velocity with m̂� = m�/mB , and Ii represent the follow-
ing integrals:

Ii =
∫ +1

−1
Fi(z)dz,

Ji =
∫ +1

0
Gi(z)dz −

∫ 0

−1
Gi(z)dz,

where

G1 =
z
√

1 − z2

(p1 · k)(p2 · k) , G2 =
z
√

1 − z2

(p1 · k)2 ,
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G3 =
√

1 − z2

(p1 · k)2 , G4 =
z
√

1 − z2

(p1 · k) ,

F1 =
z2

(p1 · k)(p2 · k) , F2 =
1

(p1 · k)(p2 · k) ,

F3 =
z2

(p1 · k)2 , F4 =
z

(p1 · k)2 ,

F5 =
1

(p1 · k)2 , F6 =
z2

p1 · k ,

F7 =
1

p1 · k .

We note that the forward–backward asymmetries ANN,
ANT, ATN and ATT are all equal to zero.

4 Numerical analysis and discussion

In this section we present our numerical analysis for all
possible polarized forward–backward asymmetries of lep-
tons. The values of the input parameters which we have
used in the numerical analysis are |VtbV ∗

ts| = 0.0385, mµ =
0.106 GeV, mτ = 1.78 GeV, mb = 4.8 GeV. For the SM
values of the Wilson coefficients we have used CSM

7 (mb) =
−0.313, CSM

9 (mb) = 4.344 which corresponds to the short
distance contributions only, and CSM

10 (mb) = −4.669. The
magnitude ofCSM

7 is quite well determined from the b → sγ
transition, and hence it is well established. Therefore the
values of CBR and CSL are fixed by the relations CBR =
−2mbC

eff
7 and CSL = −2msC

eff
7 . It is well known that the

Wilson coefficient CSM
9 receives also long distance contri-

butions which have their origin in the real c̄c intermediate
states, i.e., J/ψ, ψ′, . . . [15] that is realized as

Ceff
9 = CSM

9 + Y (ŝ),

where

Y (ŝ) = Y per(ŝ)

− 3π
α2 C

(0)
∑

Vi=ψ(1s),...,ψ(6s)

Ki
Γ (Vi → �+�−)mVi

ŝm2
B −m2

Vi
+ iΓVi

mVi

.

Explicit expressions for Y per(ŝ), C(0) and the value of Ki

can be found in [16] and [17], respectively. In the present
work we consider only short distance contributions.

A few comments about the long distance contributions
are in order. It is well known that the dominant contri-
butions arise from the first two low lying J/ψ resonances.
In order to minimize the hadronic uncertainties we must
discard the kinematical region of q2 between these two
resonances by dividing it into low and high dilepton mass
intervals as follows:


low q2 region : 4m2
� ≤ q2 ≤

(
mψ −

√√
2Γψmψ

)2

,

high q2 region :
(
mψ′ +

√√
2Γψ′mψ′

)2

≤ q2 ≤ m2
Bs
,

However, long distance contributions are negligibly small
in the regions R1 and R2, and our analysis indeed confirms
that the numerical results presented in this work almost
coincide with the results when the long distance contribu-
tions are taken into account. This is a verification of the
fact that our results are reliable and can safely be tested
in the above-mentioned domains R1 and R2.

The values of the new Wilson coefficients are needed in
order to carry out the numerical calculations for Aij given
in (17)–(22). All new Wilson coefficients are varied in the
range − ∣∣CSM

10

∣∣ ≤ CX ≤ ∣∣CSM
10

∣∣ and it is assumed that they
are real. The experimental results on the branching ratio
of the B → K∗(K)�+�− decays [18,19] and the bound on
the branching ratio of B → µ+µ− [20] suggest that this
is the right order of magnitude for the Wilson coefficients
describing the vector and scalar interaction coefficients.But
present experimental results on the branching ratio of the
B → K∗�+�− and B → K�+�− decays impose stronger
restrictions on some of the new Wilson coefficients. For
example, −2 ≤ CLL ≤ 0, 0 ≤ CRL ≤ 2.3, −1.5 ≤ CT ≤ 1.5
and −3.3 ≤ CTE ≤ 2.6, and all of the remaining Wilson
coefficients vary in the region − ∣∣CSM

10

∣∣ ≤ CX ≤ ∣∣CSM
10

∣∣.
It follows from the expressions of all forward–backward

asymmetries of the leptons that explicit forms of the form
factors are needed, which are the main and most important
parameters in the calculation of Aij . These form factors
are calculated in the framework of the QCD sum rules
in [3, 13,14] whose q2 dependences are given as

g(q
2) =

1 GeV(
1 − q2

(5.6 GeV)2

)2 ,

f(q
2) =

0.8 GeV(
1 − q2

(6.5 GeV)2

)2 ,

g1(q2) =
3.74 GeV2(

1 − q2

40.5 GeV2

)2 ,

f1(q2) =
0.67 GeV2(

1 − q2

30 GeV2

)2 ,

which we will use in the numerical analysis.
Numerical results are presented only for the Bs →

�+�−γ decay, because in the SU(3) limit the difference
between the decay rates of Bs → �+�−γ and Bd → �+�−γ
is attributed only to the CKM matrix elements. In other
words, the decay rate of the Bs → �+�−γ is approxi-
mately 20 times larger compared to that of decay rate
of Bd → �+�−γ; that is

Γ (Bd → �+�−γ)
Γ (Bs → �+�−γ)

� |VtbV ∗
td|2

|VtbV ∗
ts|2

� 1
20
.

Concerning this ratio, we would like to make the fol-
lowing remark. If the contribution of the weak annihila-
tion diagram (see for example [9]), as well as the CKM
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Fig. 1. The dependence of the polarized forward–backward
asymmetry ALT

FB on q2 at four fixed values of CLRRL for the
Bs → µ+µ−γ decay

factor in Y per(ŝ), is taken into account, Bd → �+�−γ and
Bs → �+�−γ decay rates involve then different CKM fac-
tors. And if these contributions are neglected, which in
fact are small, the above-mentioned ratio holds to within
a good accuracy for the Bq → �+�−γ decay widths.

We now proceed by commenting on the result of our
numerical analysis. Firstly, we study the dependence of
the polarized forward–backward asymmetries on q2 at five
different values of the new Wilson coefficients. Our detailed
numerical analysis shows that for the Bs → µ+µ−γ decay
only the ALT

FB and ATL
FB asymmetries have zero positions

(the numerical values of the asymmetries ALN
FB and ANL

FB
are very small and hence we do not present them). In
Fig. 1 we present the dependence of ALT

FB on q2 at five
fixed values of the scalar interaction coefficient CLRRL =
−4; −2; 0; +2; +4. From this figure we see that the zero
position which occurs for positive values ofCLRLR is shifted
to the left for increasing values of CLRLR. The same figure
also depicts that the zero position of ALT

FB is absent for
the SM case. Therefore, determination of the zero position
of ALT

FB is an unambiguous indication of the new physics
beyond the SM, as well as allowing us to determine the sign
of the scalar interaction coefficients CLRRL. The numerical
calculations show that, similar to the previous case, the
zero position of the ALT

FB appears again, but the difference
from it being it occurs for the negative values of CRLRL. A
more interesting observation for these cases is that the zero
position appears for q2 < 2 GeV2 and hence it is free of the
long distance J/ψ contributions. It should be noted here
that the zero position of ALT

FB is present for the remaining
scalar interaction coefficients CLRLR and CRLLR as well,
but zero position of ALT

FB appears at q2 � 10 GeV2. As far
asBs → µ+µ−γ decay is concerned, our numerical analysis
shows that the zero position of ALT

FB is absent for all Wilson
coefficients other than the scalar interaction coefficients.
Hence, a determination of the zero position ofALT

FB can serve
as a good test for establishing new physics beyond the SM
due to the presence of the scalar interaction coefficients.

The situation for the ATL
FB asymmetry for the Bs →

µ+µ−γ decay is richer in content compared to that of the
ALT

FB case. For this forward–backward asymmetry, the zero
position occurs for all new Wilson coefficients. In Figs. 2–5
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F
B
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)
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-0.025

Fig. 2. The dependence of the polarized forward–backward
asymmetry ATL

FB on q2 at four fixed values of CLR for the
Bs → µ+µ−γ decay

CRR = +4
CRR = +2
CRR = 0
CRR = −2
CRR = −4

q2

AT
L

F
B

(B
→

µ
− µ

+
γ
)

25.020.015.010.05.00.0

0.06

0.04

0.02

0.00

-0.02

Fig. 3. The same as in Fig. 2, but for the coefficient CRR
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Fig. 4. The same as in Fig. 2, but for the coefficient CRLRL

we present the dependence of ATL
FB on q2 at five fixed values

of the new Wilson coefficients and we get the following re-
sults.
(1) For vector interactions with the Wilson coefficientsCLL
and CRR, the zero position of ATL

FB is shifted. When these
coefficients get positive (negative) values, the zero position
of ATL

FB is shifted to the left (right) compared to that of the
SM case. In the presence of the Wilson coefficients CLR
and CRL the zero position of the ATL

FB is shifted to the
right (left) compared to that of the SM result, when these
Wilson coefficients are positive (negative).
(2) In the presence of the scalar interactions with the co-
efficients CLRRL and CRLRL, the zero position of ATL

FB is
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Fig. 5. The same as in Fig. 2, but for the coefficient CT
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Fig. 6. The dependence of the polarized forward–backward
asymmetry ALL

FB on q2 at four fixed values of CT for the Bs →
τ+τ−γ decay

shifted to the left compared to that of the SM result. The
zero position for CLRRL occurs only for its positive values,
while it occurs only for the negative values of CRLRL.

In the presence of scalar interactionsCRLLR andCLRLR,
no new zero position of ATL

FB occurs with respect to the one
for the SM case.
(3) New zero positions of ATL

FB are observed in the presence
of the tensor interaction for the positive values of CT, and
the zero position is shifted to the left,

In the case of Bs → τ+τ−γ decay, similar to the
Bs → µ+µ−γ decay, we observe that several of the po-
larized forward–backward asymmetries are very sensitive
to the existence of new physics. Let us briefly summarize
our results.
(i) ALL

FB is sensitive to the presence of the tensor interaction
and its zero position occurs for CT = +4 at q2 ≈ 17 GeV2,
while the zero position of ALL

FB is absent for the SM case.
Therefore, a determination of the zero position of ALL

FB
can confirm the existence of the tensor interaction in the
Bs → τ+τ−γ decay (see Fig. 6).
(ii) Among all polarization asymmetries (which can be
measurable in the experiments) onlyATL

FB is very sensitive to
the existence of all types of new physics interactions, except
to the presence of the vector interactions with coefficients
CLL and CRR.
(1) ATL

FB exhibits similar dependence on CLR and CRL. The
zero position of ATL

FB is shifted to the left (right) when CLR
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CT = 0
CT = −2
CT = −4
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-0.1
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-0.3

Fig. 7. The dependence of the polarized forward–backward
asymmetry ATL

FB on q2 at four fixed values of CT for the Bs →
τ+τ−γ decay

and CRL are negative (positive) compared to that of the
SM prediction. Note that the zero position of ATL

FB lies on
the left side for the vector interaction CLR compared to
the zero position of the CRL.
(2) ATL

FB shows a stronger dependence on the scalar interac-
tions CLRRL and CRLRL. The magnitude of ATL

FB increases
(decreases) as the new Wilson coefficient CLRRL gets posi-
tive (negative) values. This behavior is to the contrary for
the coefficient CRLRL.
(3) In the presence of the tensor interaction with the coef-
ficient CT, zero position of the asymmetry ATL

FB is located
on the left side of the SM prediction for negative values
of CT (Fig. 7).

We see from the explicit expressions of the polarized
forward–backward asymmetries that they all depend both
on q2 and the new Wilson coefficients. For this reason there
may appear difficulties in the experiments in studying the
dependence of the physical observables on both parameters
simultaneously. In order to get “pure information” about
new physics, we eliminate the dependence of physical quan-
tities on q2, by performing the integration over q2 in the
kinematically allowed region, i.e., we average the polarized
forward–backward asymmetry

〈Aij〉 =

∫m2
B

4m2
�
Aij

dB
dq2

dq2

∫m2
B

4m2
�

dB
dq2

dq2
.

In Fig. 8 we depict the dependence of
〈ALL

FB

〉
on the

new Wilson for the Bs → µ+µ−γ decay. From this fig-
ure we see that

〈ALL
FB

〉
shows a symmetric behavior in its

dependence on all scalar interactions; and except for the
regions −4 < CRR, CRL < 0, −0.4 < CLRRL, CLRRL < 0
and 0 ≤ CRLRL, CLRLR < 0.4 it is larger compared to the
SM result (the SM result corresponds to the intersection
point of all curves). It is also interesting to observe that〈ALL

FB

〉
>

〈ASM
FB

〉
for only negative values of CRR.

Our numerical analysis furthermore shows that, for the
Bs → µ+µ−γ decay,

〈ALT
FB

〉
is sensitive only to CT and

at negative (positive) values of CT
〈ALT

FB

〉
is positive (neg-

ative) and larger (smaller) compared to the SM result.
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Fig. 8. The dependence of the polarized forward–backward
asymmetry ALL

FB on the new Wilson coefficients for the Bs →
µ+µ−γ decay
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Fig. 9. The same as in Fig. 8, but for the polarized forward–
backward asymmetry ATL

FB

Therefore, determination of the sign and magnitude of〈ALT
FB

〉
can serve as a good test for establishing existence

of the tensor interaction.
The dependence of

〈ATL
FB

〉
on the new Wilson coeffi-

cients for the Bs → µ+µ−γ decay is presented in Fig. 9.
We observe from this figure that

〈ATL
FB

〉
shows stronger

dependence on the tensor interaction coefficient CT and
scalar interactions CRLRL and CLRRL.

In Figs. 10, 11, and 12 we present the dependence of〈ALL
FB

〉
,
〈ALT

FB

〉
and

〈ATL
FB

〉
on the new Wilson coefficients

for the Bs → τ+τ−γ decay, respectively. Figure 10 depicts
that

〈ALL
FB

〉
exhibits considerable departure from the SM

result for the scalar interactions and the vector interaction
with coefficient CRR. We see from Fig. 11 that when new
Wilson coefficients are negative

〈ALT
FB

〉
shows a stronger

dependence on the tensor interaction (CT) and scalar type
interactions, and when CX > 0,

〈ALT
FB

〉
exhibits a strong

dependence on vector interactions and the tensor interac-
tion with the coefficient CTE.

At the end of this section, we discuss the problem of
the detectability of forward–backward asymmetry in the
experiments. Experimentally, to measure an asymmetry
〈Aij〉 of the decay with the branching ratio B at nσ level,
the required number of events (i.e., the number of BB̄
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Fig. 10. The same as in Fig. 8, but for the Bs → τ+τ−γ decay

CLRRL

CLRLR

CRLRL

CLRRL

CRR

CRL

CLR

CLL

CTE

CT

CX

〈 AL
T

F
B

〉 (B
→

τ
− τ

+
γ
)

4.03.02.01.00.0-1.0-2.0-3.0-4.0

0.10

0.08

0.06

0.04

0.02

0.00

Fig. 11. The same as in Fig. 10, but for the polarized forward–
backward asymmetry ALT

FB

CLRRL

CLRLR

CRLRL

CLRRL

CRR

CRL

CLR

CLL

CTE

CT

CX

〈 AT
L

F
B

〉 (B
→

τ
− τ

+
γ
)

4.03.02.01.00.0-1.0-2.0-3.0-4.0

0.00

-0.02

-0.04

-0.06

-0.08

Fig. 12. The same as in Fig. 10, but for the polarized forward–
backward asymmetry ATL
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pairs) is given by

N =
n2

Bs1s2〈Aij〉2 ,

where s1 and s2 are the efficiencies of the leptons. The
efficiency of the µ-lepton is practically equal to one, and
typical values of the efficiency of the τ -lepton ranges from
50% to 90% for the various decay modes [21].

From the expression for N we see that, in order to obtain
the forward–backward asymmetries inBs → �+�−γ decays
at 3σ level, the minimum number of required events are
(for the efficiency of τ -lepton we take 0.5, and for 〈Aij〉,
their maximal values beyond the SM)
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(1) for the Bs → µ+µ−γ decay

N =

{∼ 2 × 109 〈ALL〉 ,
∼ 3 × 1010 〈ALT〉 � 〈ATL〉 ,

which yields that, for detecting 〈ALT〉 and 〈ATL〉, more
than 1013 B̄B pairs are required. Next,
(2) for Bs → τ+τ−γ decay

N =∼ 6 × 1011 〈ALL〉 , 〈ALT〉 , 〈ATL〉 .
The number of B̄B pairs that will be produced at LHC

is around ∼ 1012. As a result of a comparison of this number
of B̄B pairs with that of N , we conclude that 〈ALL〉, 〈ATL〉
and 〈ATL〉 in both decays can be detectable in “beyond the
SM scenarios” in future experiments at LHC. Note that
in the SM, only 〈ALL〉 for the Bs → µ+µ−γ decay can
be detectable at LHC. Therefore, the observation of these
asymmetries can be explained only by new physics beyond
the SM.

In conclusion, we calculate polarized forward–backward
asymmetries using the most general, model independent
form of the effective Hamiltonian including all possible
form of interactions. The sensitivity of the averaged po-
larized forward–backward asymmetries to the new Wilson
coefficients is studied. Finally we discuss the possibility of
experimental measurement of these double-lepton polar-
ization asymmetries at LHC.

References

1. M. Battaglia et al., hep-ph/0304132 (2003)
2. P. Ball et al., B Decays, in: Proceedings of the workshop on

Standard Model Physics (and more) at the LHC, CERN
2000–004 (2000)
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